32nm Intel Core i7 Microarchitecture-Based Rugged VME64x SBC

  • Page 1 of 1
    Bookmark and Share

A new high-performance VME64x single board computer (SBC) utilizes the new 32nm dual-core Intel Core i7-610E processor. The SVME/DMV-1905 from Curtiss-Wright Controls Embedded Computing brings the low-power, high-performance advantages of Intel architecture to demanding harsh environment compute applications. The SVME/DMV-1905 complements the new CHAMP-AV5 VME64x DSP engine, also utilizing an Intel Core i7 processor. As a board set these two cards bring the myriad advantages of the Intel 32nm process technology to the rugged deployed COTS signal processing space.

Combining this advanced dual-core CPU and Curtiss-Wright Controls’ rugged deployed technology, the SVME/DMV-1905 is designed for high-performance operation in harsh, demanding rugged environments. With a direct connection to a 17 Gbyte/s (peak) DDR3 memory subsystem, the Intel Core i7 processor is able to maximize the throughput of its SSE 4.2 floating-point processing units. The Intel Core i7 processor is equipped with more cache memory than any previous Intel CPU, enabling it to process larger vectors at peak rates than previous processor technologies. Supplying 8 Gbytes of flash and up to 8 Gbytes of SDRAM, the SVME/DMV-1905 is suitable for handling applications with demanding storage, data logging and sensor processing needs.

The SVME/DMV-1905 features a high-bandwidth PCI Express (PCIe) architecture with onboard PCIe connections between processor, mezzanine sites and the backplane. This high-bandwidth connectivity optimizes data communications between the SVME/DMV-1905 and additional boards integrated in a computing environment, including any mezzanine cards installed on the SVME/DMV-1905 and other boards installed on the system backplane. 

The CHAMP-AV5 multiprocessing board, for example, brings the floating-point performance of the Intel Core i7 processor to the VME64x form factor standard. Utilizing a pair of 2.53 GHz dual-core Intel Core i7-610E processors, the CHAMP-AV5 delivers performance rated up to 81 GFLOPs. With a 17 Gbyte/s (peak) DDR3 memory subsystem connected directly to the processor, the Intel CPU is able to optimize the throughput of its SSE 4.2 floating-point processing units. With 4 Mbytes of shared cache and two hardware threads per core, the Intel CPU can process larger vectors at peak rates significantly greater than was possible with previous AltiVec-based systems. 

A dual-core Intel Core i7 processor-based OpenVPX Ready (VITA 65) variant of the SVME/DMV-1905, the VPX6-1955, along with an OpenVPX Ready (VITA 65) variant of the CHAMP-AV5 DSP, called the CHAMP-AV7, is scheduled for release in the summer of 2010.

The SVME/DMV-1905 is supported with an extensive suite of industry-preferred software such as VxWorks, Wind River Linux, Solaris, LynxOS SE and Windows XPe operating environments. Additional software support includes Inter-processor communications (IPC) and Curtiss-Wright Controls’ Continuum Vector SSE-optimized signal processing library. Pricing for the SVME/DMV-1905 starts at $8,995.  

Curtiss-Wright Controls Embedded Computing, Leesburg, VA. (613) 254-5112. [].