Industry Insider

  • Page 1 of 1
    Bookmark and Share

Intel Buys McAfee for Over $7 Billion

In what turns out to be the biggest purchase in its history, Intel has acquired anti-virus software maker McAfee for $7.68 billion. The deal appears to have people scratching their heads speculating about just what it is that Intel has in mind. Of course, there is the revenue stream currently generated by McAfee as the second largest seller of security software in the PC market. But the big question is what the strategic intent may be. 

That may include but most definitely is not limited to selling security for PCs based on Intel processors. A clue was given by Intel CEO Paul Otellini, who said, “Everywhere we sell a microprocessor, there’s an opportunity for a security software sale to go with it. It’s not just the opportunity to co-sell; it’s the opportunity to deeply integrate these into the architecture of the products.”

From that it would appear that Intel is interested not only in the products and services that McAfee currently offers, but also in the underlying technology that can be integrated with the existing Intel architecture as hardware and/or firmware enhancements. This would take the scope beyond the world of PCs, notebooks and netbooks and into the world of connected devices, which are projected to grow into the billions. Add to that the growing trend toward cloud computing and the fact that McAfee had recently added Cloud Secure to its offerings, and it looks even more attractive. Potentially everything with an IP address represents a potential access point for hackers and malware.

It will be interesting to see how Intel goes about crafting joint products, especially in the embedded space to which it has been devoting more attention than it has traditionally been wont to do. Since the acceptance of the Atom by vast numbers of embedded developers, Intel has used the Atom technology in the new development of the Tunnel Creek device, which it claims for the first time to have conceived specifically for the embedded market. Will we see security chips or processors with built-in hardware support for security? It should be interesting.

SCSI Trade Association Announces MultiLink SAS Connectivity 

The SCSI Trade Association (STA) announced the MultiLink SAS initiative at the Flash Memory Summit on August 17. The initiative’s purpose is to improve how slot-oriented Solid State Drive (SSD) devices can be configured to improve I/O performance. The externally accessible backplane slot-based drive architecture will be fully compatible for use with existing SAS/SATA storage devices as well as new devices designed to achieve higher performance. 

A new form factor compatible connector will extend SAS to a 4-port configuration. When running at 12 Gbit/s, a single slot will be capable of providing up to 96 Gbit/s of bandwidth (full duplex). Additional signals will be provided for general purpose use within the same connector.  The MultiLink SAS architecture is a slot-compatible implementation and will accommodate a variety of SSD form factors as well as existing Hard Disk Drives (HDDs). 

Minimizing the impact to protocol changes makes MultiLink SAS primarily an enhancement to the existing connector. It was decided to maintain the existing Small Form Factor (SFF) slot dimensions for ease of refitting an existing system and for providing maximum system flexibility for storage OEMs. STA will be working with T10 and the Small Form Factor (SFF) committee to standardize this latest SAS innovation.

Fast/Rugged SDD Technology Poised for Growth

Solid state drives are poised for rapid growth in certain niche markets according to a new report just published by Objective Analysis, Solid State Disk Market Outlook 2010. Although SSDs have not found widespread acceptance in general-purpose PCs, those applications that benefit from this technology will drive the client SSD market to grow at a predicted rate of 60%. Objective Analysis predicts that in 2015 nearly 40 million SSDs will ship, accounting for over $7 billion in revenues.

“The PC market for SSDs has been slow to develop,” said the report’s author, Jim Handy. “The strongest growth has occurred in areas where HDDs simply will not operate and in systems for which users are willing to pay a significant premium for an SSD’s faster speed or greater durability.”

The report spells out details of the SSD market, its mechanics and anticipated growth. Analysis is based upon numerous interviews with both manufacturers and users of the technology, and explains both what will become of this market and why it will develop the way that it will.

Portwell Sponsors Winning Autonomous Underwater Vehicle Team

The Cornell University Autonomous Underwater Vehicle (CUAUV) team took top honors in the 2010 RoboSub competition using a robotic submarine powered by American Portwell Technology’s WADE-8067 Mini-ITX embedded board. The Cornell team builds robotic submarines for both competition and research purposes. They approached American Portwell for sponsorship when they were considering an Intel Core processor to power their AUV because they knew their onboard computer would be subject to severe size constraints and were restricted to a Mini-ITX form factor or smaller. Jack Lam, American Portwell’s senior product marketing manager, recommended the WADE-8067 Mini-ITX form factor embedded board, a combination that utilizes the Intel Core 2 processor most effectively.

The Association for Unmanned Vehicle Systems International (AUVSI) Foundation organizes the RoboSub competition, and Cornell’s Tachyon AUV beat out 23 other teams from five countries to take first place at the 13th annual competition held from July 13-18, 2010 in San Diego, California. The competition required the autonomous submarine to hit a targeted buoy, send torpedoes into specific windows and drop markers in bins. According to Daryl Davidson, AUVSI Foundation’s executive director, the course elements are designed so that at least one or two of the obstacles prove too challenging for most teams. “However, we are pleased to say that Cornell has now proven us wrong twice,” he explains.

Open Screen Project to Deliver Seamless Web Experience Across Connected Devices

Wind River has announced it is building on its collaboration with Adobe by participating in the Open Screen Project and becoming a worldwide scaling partner to bring the Adobe Flash Platform to Internet-enabled devices for rich and engaging Web experiences. The Open Screen Project is an industry wide initiative of more than 70 industry partners led by Adobe to provide consumers consistent Internet and rich media experiences across the broadest possible range of consumer electronics. 

Wind River will license, distribute and support Adobe Flash Player 10.x, Adobe AIR 2.x and Flash Lite 4.x across its portfolio of Internet-facing software platforms as well as offer integration, certification and support for these products. Joining the Open Screen Project as a scaling partner for Adobe, Wind River is one of eight global scaling partners entrusted to offer licenses for these products directly to companies worldwide. To kick off this initiative, Flash Player 10.1 and AIR will first be incorporated with Wind River Platform for Android. As an Open Screen Project participant, Wind River will work with customers to integrate Adobe Flash and AIR with their devices, and ensure their devices are compliant with the Open Screen Project certification test suites. 

With support for Flash Lite already on products such as Wind River Platform for Android, Wind River is extending its collaboration with Adobe to further pave the way for customers to create products that deliver the full experience of the Internet with Flash Player 10.1, for a variety of market segments. With active participation in the Open Screen Project, Wind River will keep Flash open and updatable in its software stack, as well as offer support customers with upgrade services. By integrating Flash into Wind River’s products, device manufacturers can benefit from faster time-to-market and reduced cost and engineering effort. Additionally, application providers can be confident that their Flash-based content and applications will run smoothly across devices that use Wind River’s Internet-facing software platforms.

CANopen Profiles for Laboratory Automation

CAN in Automation (CiA), the international users’ and manufacturers’ group for CAN (Controller Area Network), has released additional device interfaces for laboratory automation. The CiA 434 specifications (part 2 and part 3) describe device profiles for heating, cooling and shaking units as well as dispensers, dilutors and pumps. 

The profiles specify process data and configuration parameters. This makes the device in a CANopen network interoperable and even partly exchangeable, simplifying system design.

CANopen is an internationally standardized communication system (EN 50325-4), which is used in many different application fields. The CANopen profiles for laboratory automation have been developed by market-leading companies and are designed especially for pipette automation systems, but are also suitable for other laboratory equipment. In such systems, IEC 61131-3 programmable devices are increasingly used, which are originally developed for industrial automation. The CiA 434 specification has been published for CiA internally; excerpts are available for non-members.

AIT, Formerly AIM-USA, Signs Strategic Alliance with TTTech

AIT is pleased to announce the formation of a long-term strategic alliance with TTTech North America to add ARINC664/AFDX, Ethernet, Time-Triggered Ethernet and Time-Triggered Protocol to their product portfolio. AIT will provide local sales and support for North American customers and provide increased engagement in the U.S. government and aerospace market for TTTech. This tightly coupled partnership will capitalize on AIT’s experience in product design, sales, production and support, as well as TTTech’s leadership in time-triggered communication technologies.

AIT provides a suite of test and simulation products for a wide variety of avionics bus applications, including MIL-STD-1553, ARINC429, ARINC615A, Fibre Channel and MIL-STD-1760E. With support from TTTech, ARINC664/AFDX, Time-Triggered Ethernet (TTE) and Time-Triggered Protocol (TTP) will be added to AIT’s portfolio. AIT will remain an independent company and will continue to enhance and supply the newly combined variety of avionics products to aerospace customers.

The TTP ASICs are mature DO-254/DO-178B certified for design of critical embedded flight systems. TTEthernet and TTP are open industry standards (SAE AS6802 and AS6003 respectively) that offer higher bandwidth when compared to CAN, MIL-STD-1553 and ARINC429. They provide significant advantages in terms of reliability, modularity, lower weight, certification, reduced cost and faster time-to-market for aerospace systems.