Gigabit Ethernet Module Offloads Main Processor

  • Page 1 of 1
    Bookmark and Share

A high-performance Gigabit Ethernet TCP/IP offload engine (TOE) module allows the user’s embedded processor or FPGA to be dedicated entirely to the application for maximum efficiency. With the proprietary protocol chip GigExpedite handling the whole TCP/IP stack at over 100 Mbytes/s in each direction, the ZestETM1from Orange Tree Technologies relieves the CPU from handling TCP/IP at Gigabit speed and saves considerable processing power. Use of a separate dedicated TCP/IP engine frees up the embedded processor or FPGA for the application’s function. The added benefit of this is that a smaller and lower-cost processor can be used for the main application.

The ZestETM1 offers application designers and companies a simple ready-to-go high-speed Ethernet data interface solution, saving them the headache of having to get to grips with the complexity of TCP/IP or creating their own Ethernet interface.

Highly adaptable, the ZestETM1 interface can be configured to one of four modes: 8- or 16-bit SRAM-style bus, FIFO, or “bit banging.” The SRAM-style bus modes are similar to an SRAM interface with the application writing and reading ZestETM1. The FIFO mode has two separate 8-bit channels streaming in each direction to and from ZestETM1. The innovative “bit-banging” mode enables another device on the network to write or read up to 32-bit values to or from an attached device.

There is also a low-speed serial interface, which can be configured as either an SPI slave or a UART. This allows a low-performance processor to control ZestETM1 while the high-speed data interface is connected to the application data path such as FPGA, ADC, DAC or bus transceivers. A separate SPI master interface can be used, for example to configure an attached FPGA or processor.

The TCP/IP engine in GigExpedite runs at 10/100/1000 Mbits/s and delivers over 100 Mbytes/s sustained in each direction. It implements the following protocols: TCP/IP, UDP, ARP, IPv4, ICMP, IGMP, PTP and HTTP. For real-time applications, Precision Time Protocol (PTP) and SyncE offer time of day and a 125 MHz clock synchronized across the network to other network devices.

Orange Tree Technologies
Oxford, UK.
+44 01235 838646