BROWSE BY TECHNOLOGY



RTC SUPPLEMENTS


INDUSTRY INSIDER

Latest Developments in the Embedded Marketplace

  • Page 1 of 1
    Bookmark and Share

Nwave Launches Free Weightless-N IoT SDK

    The Weightless SIG has announced the launch of a complete Weightless-N development environment for low-power wide-area network connectivity in IoT projects. The development kits include a desktop base station with the same functionality as a commercial grade base station packaged in a non-ruggedized casing, a base station antenna, an end product module mounted on a development carrier board with external connections, a module antenna and a complete set of cabling. The SDK incorporates an ARM Cortex-M3 MCU with 128KB of flash memory. The kit also includes supporting software tools, Simplicity Studio and a GNU C Compiler (GCC), together with a complete user guide.

Weightless CEO, William Webb, commented “Designers have been keenly anticipating the launch of the Weightless SDK - that wait is now over” adding “We’re keen to see LPWAN projects commence rapidly so to celebrate the launch we’re making it easy to engage with Weightless technology by offering a limited number of kits available for free.”

Nwave Technologies is making the development kit available at cost and the Weightless SIG is paying this cost making SDKs free to developers. A refund of the membership fee is also being offered by the Weightless SIG to Associate Members that submit product for certification.

Weightless SIG Members get access to all of the open standard specifications, the test specifications, the test and certification programme and the right to sell product using the technology on a royalty free basis. Weightless technologies offer unique open standard access to IoT connectivity IP with substantive competitive advantage over alternative proprietary LPWAN technologies.

Zeidman Technologies and Codasip Collaborate on IoT Designs

Zeidman Technologies, a provider of tools for building custom operating systems, and Codasip, a provider of application-specific instruction-set processor (ASIPs) design tools and IP, have announced that Zeidman Technologies has joined the ASIP Design Network. This collaboration will allow joint customers to benefit from complementary processor and operating system design tools that help drive efficient performance of IoT devices. Combining application-specific processors and application-specific OSs can drastically improve performance as well as reduce hardware resource and memory requirements.

“Together, Zeidman Technologies and Codasip will help customers meet the need for lean, customized and highly efficient embedded systems to drive billions of IoT devices,” said Bob Zeidman, president of Zeidman Technologies. “Developers need the application-specific processor and operating system design resources that our companies provide to optimize the performance of their products.”

The ASIP Design Network (ADN) brings together a rich ecosystem of companies spanning service providers, IP companies and embedded software suppliers. ADN member companies are working together to accelerate adoption of ASIPs for IoT and system-on-chip (SoC) designs. The two organizations will provide introductions to their respective customers, who are providers of IoT devices that perform specific tasks as efficiently as possible while occupying the smallest possible footprint.

Icon Labs and Renesas Team up on Security for IoT and Industrial Automation

Icon Labs has announced the integration of Icon Labs’ Floodgate security products with Renesas’ R-IN32M3 industrial network controller ICs and the Renesas Synergy Platform. The integrated solution creates a secure platform for IoT and industrial automation and extends the Internet of Secure Things initiative into industrial control systems.

Icon Labs’ Internet of Secure Things Initiative defines a platform for developing secure, connected devices.  The platform ensures that security is intrinsic to the architecture of the device itself and incorporates security management, visibility, device hardening, data protection and secure communications.    These capabilities provide the foundation for the Industrial Internet of Secure Things. Natively securing the devices simplifies protection, audit, and compliance - independent of the secure perimeter, reducing the need for expensive and complicated security appliances.

“Security has become a critical requirement for our customers in all segments especially in industrial and IoT applications.  Partnering with Icon Labs allows us to provide a complete security solution that is fully integrated with our hardware platforms,” stated Semir Haddad, Senior Marketing Director, MCU and MPU Products and Solutions, Renesas Electronics America.  “Icon Labs Floodgate product family provides a comprehensive security platform for developing secure, embedded devices using the new Renesas Synergy™ Platform for IoT or the R-IN32M3 ICs for Industrial Automation.” 

The integration of Icon Labs’ Floodgate products and Renesas’ hardware platforms provides an  integrated embedded firewall, Modbus protocol filtering and  Intrusion detection in addition to secure communication and authentication. They also provide small footprint crypto libs, integration with security management systems and security policy management with event and command audit log reporting.

LTE Predicted to Become the Leading Technology for Cellular IoT Devices in 2019

A new research report from Berg Insight predicts that LTE will become the leading technology for cellular IoT devices in 2019. Berg Insight forecasts that global shipments of cellular IoT devices will grow at a compound annual growth rate (CAGR) of 20.1 percent to reach 239.7 million units in 2020. LTE device shipments started to take off in 2015 and are expected to surpass GPRS devices in four years’ time. “2G is still growing rapidly in emerging markets and has a clear cost advantage in Europe. The economics of 4G is however dramatically improved with LTE Cat-0 and the upcoming LTE-M standard. Once these are in place there will be no more significant barriers left against migration from 2G”, says Tobias Ryberg, Senior Analyst, Berg Insight and author of the report.

 As a result of the direct move from 2G to 4G, Berg Insight believes that 3G will only serve as an interim technology in cellular IoT. Annual shipments of 3G cellular IoT devices are predicted to peak in 2018. Instead the main alternative to 4G cellular technologies will be Low Power Wide Area (LPWA) networking technologies. Berg Insight believes that the 3GPP’s recent initiative to define a new narrowband radio technology for IoT (NB-IOT) is highly significant and creates a unique opportunity for the mobile industry to include a new set of applications into its domain. “A global universal standard for lightweight IoT communication on public networks is essential for driving the market forward”, Ryberg concludes.

SITRI Launches in Silicon Valley to Accelerate Innovation in “More than Moore”

The Shanghai Industrial µTechnology Research Institute (SITRI), the innovation center for accelerating the development and commercialization of “More than Moore” (MtM) solutions to power the Internet of Things (IoT), has announced the opening of SITRI Innovations in Belmont, California.

SITRI Innovations addresses a gap that exists in the current “More than Moore” and IoT innovation ecosystem and provides a path for new entrepreneurs in the hardware space to bring their ideas to fruition. “More than Moore” is the next wave of semiconductor innovations such as MEMS, Sensors, Optoelectronics, RF, Bio, and micro-Energy that do not depend on feature-size driven CMOS technology (the “Moore’s Law”). The first of its kind for “More than Moore” and IoT hardware startups, SITRI provides entrepreneurs a full spectrum of services and resources designed to help them succeed in their development and commercialization phases.

“The Internet of Things represents a vast opportunity and “More than Moore” technologies are at the heart of it,” said Charles Yang, CEO of SITRI Group. “However, the MtM silicon innovations needed requires a fusion of multi-disciplinary technologies which raises a new set of challenges in engineering and manufacturing, leaving the market open to only the largest and most sophisticated companies. SITRI Innovations addresses this by speeding up MtM innovation and commercialization, opening the IoT market to a much broader range of players and their ideas.”

 By tapping into the global ecosystem for the MtM industry, SITRI Innovations can provide startups with the resources of large corporations to access the R&D platform and critical supply chain partners needed to achieve high efficiency and fast time to market. SITRI’s unique 360-degree platform offers support to the startups in all areas, from proof of concept to engineering to fab to market studies and industry supply chain.

Altera Partners with Intrinsic-ID to Develop Secure High-end FPGA

    Altera and Intrinsic-ID have announced their collaboration on the integration of advanced security solutions into Altera’s Stratix 10 FPGAs and SoCs. Physicall Uncloneable Function (PUF)-based key storage is a new requirement for many defense and infrastructure applications today to secure and bind software to hardware functions and prevent the cloning of systems. The integration of Intrinsic-ID’s PUF technology within Stratix 10 FPGAs and SoCs will greatly enhance the security capabilities of the devices, addressing the growing need for security for all components used in systems.

    Today’s FPGAs and SoC FPGAs are sophisticated, multi-function components that demand the latest advancements in hardware security as a defense against greater adversarial challenges. Intrinsic-ID’s PUF security solution adds strong anti-tamper protection to Stratix 10 FPGA-based systems by binding proprietary and sensitive design information to the unique physics of each individual device. Binding hardware functions and software to a PUF provides a very strong device authentication method and protection against cloning. The inclusion of PUF technology and the use of a Secure Device Manager (SDM) for security management, make Stratix 10 FPGAs and SoCs an ideal solution for use in military, cloud security and IoT infrastructure, where multi-layered security and partitioned IP protection are paramount.

    The partnership between Altera and Intrinsic-ID enables users of Stratix 10 FPGAs and SoCs to license Intrinsic-ID’s PUF technology for a variety of security use cases in their designs. Customer and user support will be enabled by Intrinsic-ID and by their support partner EndoSec for U.S. customers.

    The Stratix 10 FPGA and SoC device family features a new Secure Device Manager (SDM) available in all densities and family variants. Serving as the central command center for the entire FPGA, the Secure Device Manager controls key operations such as configuration, device security, single event upset (SEU) responses and power management. The Secure Device Manager creates a unified, secure management system for the entire device, including the FPGA fabric, hard processor system (HPS) in SoC devices, embedded hard IP blocks, and I/O blocks.